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AgsNet: An Attention-Guided )
Lightweight Segmentation Network ey

Minghui Li, Zengmin Xu, Yichuan Zhang, Lingli Wei, Ningjie Zhou,
and Yanan Cui

Abstract Urinalysis test strips are commonly used for urine routine examination.
However, due to possible defects in the liquid path, such as blockages, droplets
may leak during the process of dropping urine samples onto the test strips, which
severely affects the results of medical tests. Therefore, we propose the Attention-
guided segmentation Network (AgsNet) to address errors in medical test results
caused by defects in the liquid path. AgsNet adapts its focus to different areas of the
test strip image, effectively extracting a richer and more diverse set of features. The
best segmentation result is obtained with the AgsNet achieving a mean Intersection
over Union (mloU) score of 71.8 and mean Average Precision (mAP) scores of 84.49,
respectively. These results underscore AgsNet’s potential in significantly reducing
the impact of liquid pathway defects on the reliability of urinalysis test outcomes.

Keywords MobilenetV?2 - DeepLabv3+ - Attention mechanism - Bayesian
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Fig. 1 (a)(b) Represent examples of fully-dripped cases, (e){d) Depict partly-dripped cases, and
(e)(f) illustrate un-dripped cases.

1 Introduction

Urine testing is an important component of contemporary medical clinical diagnosis
[1], and the automatic urine analyzer is a machine designed to streamline this process.
The machine is composed of multiple systems [2], including a liquid circuit system,
a strip selection system, a detection system, an electronic system, and a software
system. The liquid circuit system is responsible for dispensing the urine onto the
test strip and consists of various pipelines and pump valves. However, due to the
weak acidity of urine and the potential for long-term use of the machine, there may
be issues with pipeline aging, residual urine components, or other phenomena that
can lead to obstructions or poor airtightness in the liquid circuit system, may cause
anomalies of urine dripping (Fig. 1).

Differentiating between urine samples containing droplets and those without
droplets solely based on visual inspection is a challenging task. Moreover, the lim-
itations of the urine analyzer may result in the possibility of missing droplets. The
pixel-level classification capabilities of semantic segmentation models to correctly
identify color blocks with missing droplets.

Similar to our work, Fu et al. proposed the DANet [3], which modeled the seman-
tic interdependencies in both spatial and channel dimensions separately, but the use
of the model required consideration of computational and memory resource limita-
tions. Chen Li et al. introduced a nested attention mechanism in Unet++ [4], which
achieved good segmentation results on the dataset, but also increased the computa-
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tional complexity. In contrast, our modified model retains the attention mechanism
while simplifying the model. Ling et al. [5] introduced a combination weighted cross-
entropy loss to further improve the segmentation and recall rates for small defects.
We also employ the same method to further improve the performance of our model.
Hu etal. [6] proposed areal-time semantic segmentation method based on Joint Pyra-
mid Attention Network (JPANet). However, they still faced challenges such as the
computational burden of the segmentation network and missing spatial information
in high-level features. We find that incorporating channel attention and performing
an eight-fold upsampling approach can partially address the issue of missing spatial
information in high-level features, allowing the network to better distinguish details
and boundaries.

To the end, we propose AgsNet to extract high-dimensional information and seg-
ment color blocks with missing droplets. The presented method uses Deeplabv3+ [7]
as the backbone network, and employs the relatively lightweight MobileNetv?2 [8] as
the encoder. Additionally, two attention mechanism modules are incorporated into
the network architecture, which can enhance the accuracy of the model and reduce
the number of parameters, making it deployable on lightweight mobile devices.

2 Materials and Method

2.1 Research Subjects

This experiment uses multiple urine test strips with 8-11 different colored blocks,
eachrepresenting aunique indicator. The test strip images are created through stretch-
ing transformations, and the strips in (a)(b) have already been dripped on, resulting
in a smoother surface. The red box in (c)(d) highlights a color block that has not
been dripped on, resulting in a rougher surface. The strips in (e)(f) show test strips
without any liquid dripped on them, and there are slight variations between the strips
due to differences in the manufacturing process from various manufacturers.

The experimental data consist of 395 patient urine dipstick images, with size of
880 * 30. These images are randomly partitioned into training and testing sets, with
316 and 79 images respectively.

2.2 Proposed Model

Due to practical limitations, we could only use the low-computational-power
MobileNetV2 [9] as the main feature extraction network. MobileNetV?2 is an
upgraded version of MobileNet, which has a very important feature of using Inverted
Residual Blocks. The entire MobileNetV2 consists of Inverted Residual Blocks. The
improved network includes both an encoder and a decoder. To further extract its most
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Fig.2 Based onthe Deeplabv3+ model, we have added spatial attention mechanisms and channel
attention mechanisrs to the decoding pant

useful features and enhance the model’s understanding of spatial and channel infor-
mation, we input the extracted shallow features into a CBAM module. This increases
the model’s perceptual ability, reduces the amount of unrelated information it pro-
cesses, and improves its performance and efficiency with almost the same number
of parameters. Using 1 * 1 convolutions to connect and fuse cross-channel features
effectively reduces the number of parameters. During feature extraction, we preserve
most of the features between the channel and spatial dimensions, and then fuse them
with the deeply extracted features after a 1 * 1 convolution. This strategy allows the
maodel to capture richer and more informative features. The schematic diagram of
the entire framework is shown in Fig. 2. We proposed a new formula for the loss
function:

L= LC‘E + }\-ch + }‘-;Lﬂ (1)

whereas Loy denotes the cross-entropy loss function, the weight coefficients for
the channel attention loss and spatial attention loss are represented by A, and A,,
respectively.

We add a channel attention mechanism after five stacked features to improve
the quality of feature extraction by highlighting important patterns and relationships
among channels. Thisenables our model tocapture details and retain important infor-
mation, enhancing its interpretability and generalization ability. In addition, using an
eight-fold upsampling prevent overfitting and improves the model’s performance by
extracting deeper and more diverse features. Our shallow network feature extraction
strategy preserves the most valuable information and effectively integrates it with
deep features. These contributions have enabled our model to demonstrate outstand-
ing performance in image segmentation tasks.
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Fig.3 Theclassification results of the Bayesian network on twoexamples, where the blue represents
the features before droplet application, and the red represents the features after droplet application

2.3 Bayesian Classifier

We demonstrate in Fig. 3 the application of non-maximum suppression to images
using a modified Bayesian network. The process involves calculating the Features
from accelerated segment test (Fast) [15] score from the detected feature points,
followed by the classification of the resulting features.

We also conducted comparative work on machine learning because the types of
urine test strips may vary. We first use the Hash algorithm to identify the correct
model of the urine test strip. The similarity between two models is measured by
the Hamming distance and the standard library. The smaller the Hamming distance,
the higher the similarity. A Hamming distance of 0 means that the two images are
identical. We extract the noise of the unused test strip through the Fast. Here is our
proposed improved Bayesian classifier:

P(c) (2)

_ Pix, Cx, yle)
c=argmax ————
‘i P(xlc:)

whereas P(x, C(x, ¥)|¢;) can be computed based on the sample characteristics x,
category ¢;, and considering y as the label, we are able to obtain favorable outcomes
by utilizing Bayesian networks for classification. However, given the considerable
quantity of test strip models, we have currently set aside this approach.

2.4 Attention Mechanism

The introduced attention module enhances performance while avoiding dimen-
sionality reduction by proposing a strategy. One-dimensional convolution is used
to reduce parameter computation, and an efficient channel attention block is added.
Spatial attention mechanisms are incorporated into SE and ECA blocks, achieving
dual-channel attention [ 10]. The details of the module are shown in Fig. 4. They also
use convolutional block attention modules to reduce parameter size [11].
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3 Experiment

3.1 Data Preprocessing and Augmentation

By scaling the image to a size of 960 * 256, and then changing the length and width
of the image at random, the data enhancement technology includes randomrotation,
ranging from 1 to 360°, horizontal and vertical flipping used in this study, the image
is transferred to HSV color. The first row displays the original images, while the
second row shows the detection results. The red bars displayed on the detection
results indicate the segmented areas where droplets are missed (Fig. 5).

Fig. 5 The red labels represent the segmentation results before the droplet is applied
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Table 1 Quantitative evalvation results on the test set. We compare five models and use two
evaluation indicators, mIolU and mAP, to analyze the results

Structure Backbone mPrecision Recall mloU mAP Size (MB)
UNet VGG 73.29 60.61 48.98 60.61 95.0
Resnet30 67.07 71.69 5903 71.69 167.9
PSPNet MobileNetV2 | 58.63 60.92 38.46 60.92 9.3
Resnet30 5477 55.99 3437 55.99 178.5
HRNet W32 69.44 73.93 54.51 73.93 1133
W18 67.82 7248 5131 72.48 37.3
AgsNet MobileNetV2 | §2.02 84.73 70.43 82.82 224

We compared five models and used two evaluation indicators, mIolJ and mAP, to analyze the results

3.2 Implementation Details

The urine test strip used in this experiment contains 8—11 color blocks, with each
block representing a different index. The testing process requires an automated urine
analyzer to dispense droplets sequentially from the first color block, following the
urine system.

The network utilizes Adam [12] as the optimizer, with the model’s learning rate set
at 5e—4. To prevent overfitting, weight decay is employed. The momentum parameter
[13] used internally by the optimizer is set to 1—4 e. We apply cosine annealing to
reduce the learning rate [14]. In this experiment, after multiple comparisons, we have
chosen to set the number of epochs at 500.

Experimental setup: The experiments are conducted on a machine equipped with
an Intel(R) E5-2650 v4 @ 2.20GHz processor and four NVIDIA TTTAN Xp GPUs,
each with 12 GB of memory. All networks are implemented using PyTorch.

3.3 Results

The performance of the model is evaluated in this study using mloU and mAP as
melrics. For comparison purposes, we also conducted training and evaluation of
UNet, PSPNet, HRNet on the dataset using the same strategy. We also try to change
the different backbone network in order to multi-level contrast, in the end we find
that the added attention mechanism, reduction of model parameters, only 22.4 MB
insize (Table 1).

The table shows quantitative results for the models evaluated. The Unet model
achieves amlolU score of 59.03 and mAP scores of 71.69. The PSPNet model achieves
a lower mloU score of 38.46, and its model parameters are only 9.3 MB, its perfor-
mance is not satisfactory. The HRNet model achieves a mloU score of 54.51, and
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mAP scores of 73.93, but its model parameters are larger at 113.3 MB. Nonetheless,
compare to Proposed model, all of these models have significant deficiencies.

3.4 Conclusion

The proposed model is an improved semantic segmentation model that incorporates
an attention mechanism and achieves lightweight model parameters by segmenting
samples with and without drops. This innovation makes it possible to deploy the
model on mobile devices, greatly facilitating healthcare workers. The test results
demonstrate that the improved model achieves superior performance compared to
the comparative method.
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